Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.489
Filtrar
1.
Nan Fang Yi Ke Da Xue Xue Bao ; 44(3): 605-616, 2024 Mar 20.
Artigo em Chinês | MEDLINE | ID: mdl-38597453

RESUMO

OBJECTIVE: To explore the core genes related to the diagnosis and prognosis of gastric cancer (GC) based on Gene Expression Omnibus (GEO) database and screen the molecular targets involved in the occurrence and development of GC. METHODS: GC microarray data GSE118916, GSE54129 and GSE79973 were downloaded from GEO database, and the differentially expressed genes (DEGs) were screened. Enrichment analysis of the signaling pathways and molecular functions were preformed and protein-protein interaction networks (PPI) were constructed to identify the hub genes, whose expression levels and diagnostic and prognostic values were verifies based on gastric adenocarcinoma data from TCGA. The expression levels of these core genes were also detected in different GC cell lines using qRT- PCR. RESULTS: Seventy-seven DEGs were identified, which encodes proteins located mainly in the extracellular matrix and basement membrane with activities of oxidoreductase and extracellular matrix receptor and ligand, involving the biological processes of digestion and hormone metabolism and the signaling pathways in retinol metabolism and gastric acid secretion. Nine hub genes were obtained, among which SPARC, TIMP1, THBS2, COL6A3 and THY1 were significantly up- regulated and TFF1, GKN1, TFF2 and PGC were significantly down-regulated in GC. The abnormal expressions of SPARC, TIMP1, THBS2, COL6A3, TFF2 and THY1 were significantly correlated with the survival time of GC patients. ROC curve analysis showed that aberrant expression of TIMP1 SPARC, THY1 and THBS2 had high diagnostic value for GC. High expressions of SPARC, TIMP1, THBS2 and COL6A3 were detected in GC tissues. In the GC cell lines, qRT- PCR revealed different expression patterns of these hub genes, but their expressions were largely consistent with those found in bioinformatics analyses. CONCLUSION: SPARC, TIMP1, THBS2 and other DEGs are probably involved in GC occurrence and progression and may serve as potential candidate molecular markers for early diagnosis and prognostic evaluation of GC.


Assuntos
Hormônios Peptídicos , Neoplasias Gástricas , Humanos , Neoplasias Gástricas/patologia , Perfilação da Expressão Gênica , Detecção Precoce de Câncer , Mapas de Interação de Proteínas/genética , Prognóstico , Colágeno , Biologia Computacional
2.
Cancer Rep (Hoboken) ; 7(4): e2032, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38577722

RESUMO

BACKGROUND: The diverse and complex attributes of cancer have made it a daunting challenge to overcome globally and remains to endanger human life. Detection of critical cancer-related gene alterations in solid tumor samples better defines patient diagnosis and prognosis, and indicates what targeted therapies must be administered to improve cancer patients' outcome. MATERIALS AND METHODS: To identify genes that have aberrant expression across different cancer types, differential expressed genes were detected within the TCGA datasets. Subsequently, the DEGs common to all pan cancers were determined. Furthermore, various methods were employed to gain genetic alterations, co-expression genes network and protein-protein interaction (PPI) network, pathway enrichment analysis of common genes. Finally, the gene regulatory network was constructed. RESULTS: Intersectional analysis identified UBE2C as a common DEG between all 28 types of studied cancers. Upregulated UBE2C expression was significantly correlated with OS and DFS of 10 and 9 types of cancer patients. Also, UBE2C can be a diagnostic factor in CESC, CHOL, GBM, and UCS with AUC = 100% and diagnose 19 cancer types with AUC ≥90%. A ceRNA network constructed including UBE2C, 41 TFs, 10 shared miRNAs, and 21 circRNAs and 128 lncRNAs. CONCLUSION: In summary, UBE2C can be a theranostic gene, which may serve as a reliable biomarker in diagnosing cancers, improving treatment responses and increasing the overall survival of cancer patients and can be a promising gene to be target by cancer drugs in the future.


Assuntos
Biomarcadores , Neoplasias , Enzimas de Conjugação de Ubiquitina , Humanos , Biomarcadores/metabolismo , Biologia Computacional/métodos , Neoplasias/diagnóstico , Neoplasias/genética , Prognóstico , Mapas de Interação de Proteínas/genética , Enzimas de Conjugação de Ubiquitina/genética , Enzimas de Conjugação de Ubiquitina/metabolismo
3.
Sci Rep ; 14(1): 7604, 2024 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-38556560

RESUMO

Small cell lung cancer (SCLC) is well known as a highly malignant neuroendocrine tumor. Immunotherapy combined with chemotherapy has become a standard treatment for extensive SCLC. However, since most patients quickly develop resistance and relapse, finding new therapeutic targets for SCLC is important. We obtained four microarray datasets from the Gene Expression Omnibus database and screened differentially expressed genes by two methods: batch correction and "RobustRankAggregation". After the establishment of a protein-protein interaction network through Cytoscape, seven hub genes (AURKB, BIRC5, TOP2A, TYMS, PCNA, UBE2C, and AURKA) with high expression in SCLC samples were obtained by eight CytoHubba algorithms. The Least Absolute Shrinkage and Selection Operator regression and the Wilcoxon test were used to analyze the differences in the immune cells' infiltration between normal and SCLC samples. The contents of seven kinds of immune cells were considered to differ significantly between SCLC samples and normal samples. A negative association was found between BIRC5 and monocytes in the correlation analysis between immune cells and the seven hub genes. The subsequent in vitro validation of experimental results showed that downregulating the expression of BIRC5 by siRNA can promote apoptotic activity of SCLC cells and inhibit their vitality, migration, and invasion. The use of BIRC5 inhibitor inhibited the vitality of SCLC cells and increased their apoptotic activity. BIRC5 may be a novel therapeutic target option for SCLC.


Assuntos
Neoplasias Pulmonares , Carcinoma de Pequenas Células do Pulmão , Humanos , Carcinoma de Pequenas Células do Pulmão/patologia , Neoplasias Pulmonares/patologia , Recidiva Local de Neoplasia , Mapas de Interação de Proteínas/genética , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo
4.
Front Immunol ; 15: 1341255, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38464517

RESUMO

T-cell acute lymphoblastic leukemia (T-ALL)/T-cell lymphoblastic lymphoma (T-LBL) is an uncommon but highly aggressive hematological malignancy. It has high recurrence and mortality rates and is challenging to treat. This study conducted bioinformatics analyses, compared genetic expression profiles of healthy controls with patients having T-ALL/T-LBL, and verified the results through serological indicators. Data were acquired from the GSE48558 dataset from Gene Expression Omnibus (GEO). T-ALL patients and normal T cells-related differentially expressed genes (DEGs) were investigated using the online analysis tool GEO2R in GEO, identifying 78 upregulated and 130 downregulated genes. Gene Ontology (GO) and protein-protein interaction (PPI) network analyses of the top 10 DEGs showed enrichment in pathways linked to abnormal mitotic cell cycles, chromosomal instability, dysfunction of inflammatory mediators, and functional defects in T-cells, natural killer (NK) cells, and immune checkpoints. The DEGs were then validated by examining blood indices in samples obtained from patients, comparing the T-ALL/T-LBL group with the control group. Significant differences were observed in the levels of various blood components between T-ALL and T-LBL patients. These components include neutrophils, lymphocyte percentage, hemoglobin (HGB), total protein, globulin, erythropoietin (EPO) levels, thrombin time (TT), D-dimer (DD), and C-reactive protein (CRP). Additionally, there were significant differences in peripheral blood leukocyte count, absolute lymphocyte count, creatinine, cholesterol, low-density lipoprotein, folate, and thrombin times. The genes and pathways associated with T-LBL/T-ALL were identified, and peripheral blood HGB, EPO, TT, DD, and CRP were key molecular markers. This will assist the diagnosis of T-ALL/T-LBL, with applications for differential diagnosis, treatment, and prognosis.


Assuntos
Linfoma de Células T , Leucemia-Linfoma Linfoblástico de Células T Precursoras , Humanos , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células T Precursoras/patologia , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Mapas de Interação de Proteínas/genética , Transcriptoma , Biologia Computacional/métodos
5.
Sci Rep ; 14(1): 6553, 2024 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-38504116

RESUMO

Spinal cord injury (SCI) can cause a range of functional impairments, and patients with SCI have limited potential for functional recovery. Previous studies have demonstrated that autophagy plays a role in the pathological process of SCI, but the specific mechanism of autophagy in this context remains unclear. Therefore, we explored the role of autophagy in SCI by identifying key autophagy-related genes and pathways. This study utilized the GSE132242 expression profile dataset, which consists of four control samples and four SCI samples; autophagy-related genes were sourced from GeneCards. R software was used to screen differentially expressed genes (DEGs) in the GSE132242 dataset, which were then intersected with autophagy-related genes to identify autophagy-related DEGs in SCI. Subsequently, the expression levels of these genes were confirmed and analyzed with gene ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG). A protein-protein interaction (PPI) analysis was conducted to identify interaction genes, and the resulting network was visualized with Cytoscape. The MCODE plug-in was used to build gene cluster modules, and the cytoHubba plug-in was applied to screen for hub genes. Finally, the GSE5296 dataset was used to verify the reliability of the hub genes. We screened 129 autophagy-related DEGs, including 126 up-regulated and 3 down-regulated genes. GO and KEGG pathway enrichment analysis showed that these 129 genes were mainly involved in the process of cell apoptosis, angiogenesis, IL-1 production, and inflammatory reactions, the TNF signaling pathway and the p53 signaling pathway. PPI identified 10 hub genes, including CCL2, TGFB1, PTGS2, FN1, HGF, MYC, IGF1, CD44, CXCR4, and SERPINEL1. The GSE5296 dataset revealed that the control group exhibited lower expression levels than the SCI group, although only CD44 and TGFB1 showed significant differences. This study identified 129 autophagy-related genes that might play a role in SCI. CD44 and TGFB1 were identified as potentially important genes in the autophagy process after SCI. These findings provide new targets for future research and offer new perspectives on the pathogenesis of SCI.


Assuntos
Perfilação da Expressão Gênica , Traumatismos da Medula Espinal , Humanos , Perfilação da Expressão Gênica/métodos , Mapas de Interação de Proteínas/genética , Reprodutibilidade dos Testes , Traumatismos da Medula Espinal/genética , Traumatismos da Medula Espinal/metabolismo , Autofagia/genética , Biologia Computacional/métodos
6.
J Coll Physicians Surg Pak ; 34(3): 290-295, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38462863

RESUMO

OBJECTIVE: To search for potential biomarkers and available medicines for gastric adenocarcinoma. STUDY DESIGN: Experimental study. Place and Duration of the Study: Scientific Research Section, Shenzhen Longhua District Central Hospital, Shenzhen, China, from January to April 2023. METHODOLOGY: Datasets were retrieved from the Gene Expression Omnibus (GEO). Differential gene expression analysis between gastric adenocarcinoma and normal samples was conducted using GEO2R. Subsequent Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were performed via the Enrichr website. Protein-protein interaction (PPI) networks were established using the STRING website. The central hub genes were identified using the cytoHubba plugin integrated within Cytoscape. Finally, the GEPIA2 and QuartataWeb websites were employed to validate the expression levels of the hub genes and to identify potential medicines for gastric adenocarcinoma. RESULTS: In total, 133 DEGs were identified. GO analysis revealed that these DEGs predominantly participate in processes such as cell adhesion, positive regulation of cell proliferation, and extracellular matrix organisation. In the KEGG pathways, DEGs were significantly enriched in gastric acid secretion, protein digestion and absorption, and ECM-receptor interaction. Following the construction of the PPI network, 10 central hub genes were identified and validated using GEPIA2. Notably, among these hub genes, SERPINE1 demonstrated a significant association with the prognosis of gastric adenocarcinoma, and potential therapeutic agents were subsequently predicted. CONCLUSION: SERPINE1 and potential therapeutic agents hold promise to enhance personalised diagnosis and treatment for gastric adenocarcinoma patients in the future. KEY WORDS: Biomarkers, Gastric adenocarcinoma, Bioinformatics, Differentially Expressed Genes (DEGs).


Assuntos
Adenocarcinoma , Neoplasias Gástricas , Humanos , Perfilação da Expressão Gênica , Redes Reguladoras de Genes , Biomarcadores Tumorais/metabolismo , Mapas de Interação de Proteínas/genética , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/genética , Neoplasias Gástricas/patologia , Adenocarcinoma/tratamento farmacológico , Adenocarcinoma/genética , Adenocarcinoma/patologia , Biologia Computacional , Regulação Neoplásica da Expressão Gênica
7.
BMC Cardiovasc Disord ; 24(1): 183, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38539069

RESUMO

BACKGROUND: Myocardial ischemia is a prevalent cardiovascular disorder associated with significant morbidity and mortality. While prompt restoration of blood flow is essential for improving patient outcomes, the subsequent reperfusion process can result in myocardial ischemia-reperfusion injury (MIRI). Mitophagy, a specialized autophagic mechanism, has consistently been implicated in various cardiovascular disorders. However, the specific connection between ischemia-reperfusion and mitophagy remains elusive. This study aims to elucidate and validate central mitophagy-related genes associated with MIRI through comprehensive bioinformatics analysis. METHODS: We acquired the microarray expression profile dataset (GSE108940) from the Gene Expression Omnibus (GEO) and identified differentially expressed genes (DEGs) using GEO2R. Subsequently, these DEGs were cross-referenced with the mitophagy database, and differential nucleotide sequence analysis was performed through enrichment analysis. Protein-protein interaction (PPI) network analysis was employed to identify hub genes, followed by clustering of these hub genes using cytoHubba and MCODE within Cytoscape software. Gene set enrichment analysis (GSEA) was conducted on central genes. Additionally, Western blotting, immunofluorescence, and quantitative polymerase chain reaction (qPCR) analyses were conducted to validate the expression patterns of pivotal genes in MIRI rat model and H9C2 cardiomyocytes. RESULTS: A total of 2719 DEGs and 61 mitophagy-DEGs were identified, followed by enrichment analyses and the construction of a PPI network. HSP90AA1, RPS27A, EEF2, EIF4A1, EIF2S1, HIF-1α, and BNIP3 emerged as the seven hub genes identified by cytoHubba and MCODE of Cytoscape software. Functional clustering analysis of HIF-1α and BNIP3 yielded a score of 9.647, as determined by Cytoscape (MCODE). In our MIRI rat model, Western blot and immunofluorescence analyses confirmed a significant elevation in the expression of HIF-1α and BNIP3, accompanied by a notable increase in the ratio of LC3II to LC3I. Subsequently, qPCR confirmed a significant upregulation of HIF-1α, BNIP3, and LC3 mRNA in the MIRI group. Activation of the HIF-1α/BNIP3 pathway mediates the regulation of the degree of Mitophagy, thereby effectively reducing apoptosis in rat H9C2 cardiomyocytes. CONCLUSIONS: This study has identified seven central genes among mitophagy-related DEGs that may play a pivotal role in MIRI, suggesting a correlation between the HIF-1α/BNIP3 pathway of mitophagy and the pathogenesis of MIRI. The findings highlight the potential importance of mitophagy in MIRI and provide valuable insights into underlying mechanisms and potential therapeutic targets for further exploration in future studies.


Assuntos
Isquemia Miocárdica , Traumatismo por Reperfusão Miocárdica , Humanos , Ratos , Animais , Traumatismo por Reperfusão Miocárdica/metabolismo , Mitofagia/genética , Mapas de Interação de Proteínas/genética , Biologia Computacional
8.
Turk J Gastroenterol ; 35(1): 61-72, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38454278

RESUMO

BACKGROUND/AIMS: Colorectal cancer (CRC) ranks third among malignancies in terms of global incidence and has a poor prognosis. The identification of effective diagnostic and prognostic biomarkers is critical for CRC treatment. This study intends to explore novel genes associated with CRC progression via bioinformatics analysis. MATERIALS AND METHODS: Dataset GSE184093 was selected from the Gene Expression Omnibus database to identify differentially expressed genes (DEGs) between CRC and noncancerous specimens. Functional enrichment analyses were implemented for probing the biological functions of DEGs. Gene Expression Profiling Interactive Analysis and Kaplan-Meier plotter databases were employed for gene expression detection and survival analysis, respectively. Western blotting and real-time quantitative polymerase chain reaction were employed for detecting molecular protein and messenger RNA levels, respectively. Flow cytometry, Transwell, and CCK-8 assays were utilized for examining the effects of GBA2 and ST3GAL5 on CRC cell behaviors. RESULTS: There were 6464 DEGs identified, comprising 3005 downregulated DEGs (dDEGs) and 3459 upregulated DEGs (uDEGs). Six dDEGs were significantly associated with the prognoses of CRC patients, including PLCE1, PTGS1, AMT, ST8SIA1, ST3GAL5, and GBA2. Upregulating ST3GAL5 or GBA2 repressed the malignant behaviors of CRC cells. CONCLUSION: We identified 6 genes related to CRC progression, which could improve the disease prognosis and treatment.


Assuntos
Neoplasias Colorretais , Mapas de Interação de Proteínas , Humanos , Mapas de Interação de Proteínas/genética , Redes Reguladoras de Genes , Prognóstico , Neoplasias Colorretais/diagnóstico , Biologia Computacional , Biomarcadores/metabolismo , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Regulação Neoplásica da Expressão Gênica/genética
9.
Sci Rep ; 14(1): 4183, 2024 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-38378847

RESUMO

Melanoma is a malignant skin tumor. This study aimed to explore and assess the effect of novel biomarkers on the progression of melanoma. Differently expressed genes (DEGs) were screened from GSE3189 and GSE46517 datasets of Gene Expression Omnibus database using GEO2R. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analyses were conducted based on the identified DEGs. Hub genes were identified and assessed using protein-protein interaction networks, principal component analysis, and receiver operating characteristic curves. Quantitative real-time polymerase chain reaction was employed to measure the mRNA expression levels. TIMER revealed the association between aldehyde dehydrogenase 2 (ALDH2) and tumor immune microenvironment. The viability, proliferation, migration, and invasion were detected by cell counting kit-8, 5-ethynyl-2'-deoxyuridine, wound healing, and transwell assays. Total 241 common DEGs were screened out from GSE3189 and GSE46517 datasets. We determined 6 hub genes with high prediction values for melanoma, which could distinguish tumor samples from normal samples. ALDH2, ADH1B, ALDH3A2, DPT, EPHX2, and GATM were down-regulated in A375 and SK-MEL-2 cells, compared with the human normal melanin cell line (PIG1 cells). ALDH2 was selected as the candidate gene in this research, presenting a high diagnostic and predictive value for melanoma. ALDH2 had a positive correlation with the infiltrating levels of immune cells in melanoma microenvironment. Overexpression of ALDH2 inhibited cell viability, proliferation, migration, and invasion of A375/SK-MEL-2 cells. ALDH2 is a new gene biomarker of melanoma, which exerts an inhibitory effect on melanoma.


Assuntos
Melanoma , Neoplasias Cutâneas , Humanos , Melanoma/genética , Melanoma/patologia , Perfilação da Expressão Gênica , Biomarcadores , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/patologia , Mapas de Interação de Proteínas/genética , Microambiente Tumoral/genética , Aldeído-Desidrogenase Mitocondrial/genética
10.
Hum Genomics ; 18(1): 15, 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38326862

RESUMO

BACKGROUND: It is valuable to analyze the genome-wide association studies (GWAS) data for a complex disease phenotype in the context of the protein-protein interaction (PPI) network, as the related pathophysiology results from the function of interacting polyprotein pathways. The analysis may include the design and curation of a phenotype-specific GWAS meta-database incorporating genotypic and eQTL data linking to PPI and other biological datasets, and the development of systematic workflows for PPI network-based data integration toward protein and pathway prioritization. Here, we pursued this analysis for blood pressure (BP) regulation. METHODS: The relational scheme of the implemented in Microsoft SQL Server BP-GWAS meta-database enabled the combined storage of: GWAS data and attributes mined from GWAS Catalog and the literature, Ensembl-defined SNP-transcript associations, and GTEx eQTL data. The BP-protein interactome was reconstructed from the PICKLE PPI meta-database, extending the GWAS-deduced network with the shortest paths connecting all GWAS-proteins into one component. The shortest-path intermediates were considered as BP-related. For protein prioritization, we combined a new integrated GWAS-based scoring scheme with two network-based criteria: one considering the protein role in the reconstructed by shortest-path (RbSP) interactome and one novel promoting the common neighbors of GWAS-prioritized proteins. Prioritized proteins were ranked by the number of satisfied criteria. RESULTS: The meta-database includes 6687 variants linked with 1167 BP-associated protein-coding genes. The GWAS-deduced PPI network includes 1065 proteins, with 672 forming a connected component. The RbSP interactome contains 1443 additional, network-deduced proteins and indicated that essentially all BP-GWAS proteins are at most second neighbors. The prioritized BP-protein set was derived from the union of the most BP-significant by any of the GWAS-based or the network-based criteria. It included 335 proteins, with ~ 2/3 deduced from the BP PPI network extension and 126 prioritized by at least two criteria. ESR1 was the only protein satisfying all three criteria, followed in the top-10 by INSR, PTN11, CDK6, CSK, NOS3, SH2B3, ATP2B1, FES and FINC, satisfying two. Pathway analysis of the RbSP interactome revealed numerous bioprocesses, which are indeed functionally supported as BP-associated, extending our understanding about BP regulation. CONCLUSIONS: The implemented workflow could be used for other multifactorial diseases.


Assuntos
Estudo de Associação Genômica Ampla , Mapas de Interação de Proteínas , Humanos , Mapas de Interação de Proteínas/genética , Estudo de Associação Genômica Ampla/métodos , Pressão Sanguínea/genética , Genótipo , Bases de Dados Factuais , ATPases Transportadoras de Cálcio da Membrana Plasmática
11.
Aging (Albany NY) ; 16(4): 3185-3199, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38382096

RESUMO

BACKGROUND: Psoriasis is a chronic inflammatory skin disease. However, the influence of the TOP2A and MELK genes on psoriasis remains unclear. METHODS: Psoriasis datasets GSE166388 and GSE181318 were downloaded from the Gene Expression Omnibus (GEO) database generated from GPL570 and GPL22120. Differential gene expression (DEGs) was identified. Functional enrichment analysis, gene set enrichment analysis (GSEA), weighted gene co-expression network analysis (WGCNA), and immune infiltration analysis were conducted. The protein-protein interaction (PPI) network was constructed and analyzed. Gene expression heat map was generated. The most relevant diseases associated with core genes were determined through comparison with the Comparative Toxicogenomics Database (CTD) website. TargetScan was used to select miRNAs regulating central DEGs. RESULTS: A total of 773 DEGs were identified. According to Gene Ontology (GO) analysis, they were mainly enriched in mitochondrial gene expression, oxidative phosphorylation, mitochondrial envelope, mitochondria and ribosome. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis revealed that target cells were mainly enriched in metabolic pathways, proteasome, and oxidative phosphorylation. Seven core genes (TOP2A, NUF2, MELK, ASPM, DLGAP5, CCNA2, DEPDC1B) were obtained. The gene expression heatmap showed high expression of core genes (TOP2A, MELK) in psoriasis samples, while DEPDC1B, CCNA2, DLGAP5, NUF2, ASPM were lowly expressed in psoriasis samples. CTD analysis found that TOP2A and MELK were related to skin neoplasms, skin diseases, psoriasis, erythema, dermatitis, and infections. CONCLUSION: TOP2A and MELK genes are highly expressed in psoriasis, and higher expression of TOP2A and MELK genes is associated with poorer prognosis.


Assuntos
Redes Reguladoras de Genes , Psoríase , Humanos , Regulação Neoplásica da Expressão Gênica , Mapas de Interação de Proteínas/genética , Perfilação da Expressão Gênica , Psoríase/genética , Proteínas do Tecido Nervoso/genética , Biologia Computacional , Proteínas Serina-Treonina Quinases/genética , Proteínas Ativadoras de GTPase/genética
12.
Aging (Albany NY) ; 16(4): 3880-3895, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38382092

RESUMO

BACKGROUNDS: Carotid atherosclerosis is prone to rupture and cause ischemic stroke in advanced stages of development. Our research aims to provide markers for the progression of atherosclerosis and potential targets for its treatment. METHODS: We performed a thorough analysis using various techniques including DEGs, GO/KEGG, xCell, WGCNA, GSEA, and other methods. The gene expression omnibus datasets GSE28829 and GSE43292 were utilized for this comprehensive analysis. The validation datasets employed in this study consisted of GSE41571 and GSE120521 datasets. Finally, we validated PLEK by immunohistochemistry staining in clinical samples. RESULTS: Using the WGCNA technique, we discovered 636 differentially expressed genes (DEGs) and obtained 12 co-expression modules. Additionally, we discovered two modules that were specifically associated with atherosclerotic plaque. A total of 330 genes that were both present in DEGs and WGCNA results were used to create a protein-protein network in Cytoscape. We used four different algorithms to get the top 10 genes and finally got 6 overlapped genes (TYROBP, ITGB2, ITGAM, PLEK, LCP2, CD86), which are identified by GSE41571 and GSE120521 datasets. Interestingly, the area under curves (AUC) of PLEK is 0.833. Besides, we found PLEK is strongly positively correlated with most lymphocytes and myeloid cells, especially monocytes and macrophages, and negatively correlated with most stromal cells (e.g, neurons, myocytes, and fibroblasts). The expression of PLEK were consistent with the immunohistochemistry results. CONCLUSIONS: Six genes (TYROBP, ITGB2, ITGAM, PLEK, LCP2, CD86) were found to be connected with carotid atherosclerotic plaques and PLEK may be an important biomarker and a potential therapeutic target.


Assuntos
Aterosclerose , Doenças das Artérias Carótidas , Placa Aterosclerótica , Humanos , Placa Aterosclerótica/genética , Placa Aterosclerótica/metabolismo , Perfilação da Expressão Gênica/métodos , Mapas de Interação de Proteínas/genética , Aterosclerose/metabolismo , Doenças das Artérias Carótidas/genética , Biologia Computacional/métodos
13.
BMC Med Genomics ; 17(1): 45, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38302910

RESUMO

BACKGROUND: Laryngeal cancer (LC) is a malignant tumor with high incidence and mortality. We aim to explore key genes as novel biomarkers to find potential target of LC in clinic diagnosis and treatment. METHODS: We retrieved GSE143224 and GSE84957 datasets from the Gene Expression Omnibus database to screen the differentially expressed genes (DEGs). Hub genes were identified from protein-protein interaction networks and further determined using receiver operating characteristic curves and principal component analysis. The expression of hub gene was verified by quantitative real time polymerase chain reaction. The transfection efficiency of BCL2 interacting protein like (BNIPL) was measured by western blot. Proliferation, migration, and invasion abilities were detected by Cell Counting Kit-8, wound-healing, and transwell assays, respectively. RESULTS: Total 96 overlapping DEGs were screened out from GSE143224 and GSE84957 datasets. Six hub genes (BNIPL, KRT4, IGFBP3, MMP10, MMP3, and TGFBI) were identified from PPI network. BNIPL was selected as the target gene. The receiver operating characteristic curves of BNIPL suggested that the false positive rate was 18.5% and the true positive rate was 81.5%, showing high predictive values for LC. The expression level of BNIPL was downregulated in TU212 and TU686 cells. Additionally, overexpression of BNIPL suppressed the proliferation, migration, and invasion of TU212 and TU686 cells. CONCLUSION: BNIPL is a novel gene signature involved in LC progression, which exerts an inhibitory effect on LC development. These findings provide a novel insight into the pathogenesis of LC.


Assuntos
Perfilação da Expressão Gênica , Neoplasias Laríngeas , Humanos , Neoplasias Laríngeas/genética , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Mapas de Interação de Proteínas/genética , Biologia Computacional , Proteínas Adaptadoras de Transdução de Sinal/genética
14.
Medicine (Baltimore) ; 103(7): e37255, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38363924

RESUMO

Sepsis is a syndrome characterized by a systemic inflammatory response due to the invasion of pathogenic microorganisms. The relationship between Lipocalin-2 (LCN2), elastase, neutrophil expressed (ELANE) and sepsis remains unclear. The sepsis datasets GSE137340 and GSE154918 profiles were downloaded from gene expression omnibus generated from GPL10558. Batch normalization, differentially expressed Genes (DEGs) screening, weighted gene co-expression network analysis (WGCNA), functional enrichment analysis, Gene Set Enrichment Analysis (GSEA), immune infiltration analysis, construction and analysis of protein-protein interaction (PPI) networks, Comparative Toxicogenomics Database (CTD) analysis were performed. Gene expression heatmaps were generated. TargetScan was used to screen miRNAs of DEGs. 328 DEGs were identified. According to Gene Ontology (GO), in the Biological Process analysis, they were mainly enriched in immune response, apoptosis, inflammatory response, and immune response regulation signaling pathways. In cellular component analysis, they were mainly enriched in vesicles, cytoplasmic vesicles, and secretory granules. In Molecular Function analysis, they were mainly concentrated in hemoglobin binding, Toll-like receptor binding, immunoglobulin binding, and RAGE receptor binding. In Kyoto Encyclopedia of Genes and Genomes (KEGG), they were mainly enriched in NOD-like receptor signaling pathway, Toll-like receptor signaling pathway, TNF signaling pathway, P53 signaling pathway, and legionellosis. Seventeen modules were generated. The PPI network identified 4 core genes (MPO, ELANE, CTSG, LCN2). Gene expression heatmaps revealed that core genes (MPO, ELANE, CTSG, LCN2) were highly expressed in sepsis samples. CTD analysis found that MPO, ELANE, CTSG and LCN2 were associated with sepsis, peritonitis, meningitis, pneumonia, infection, and inflammation. LCN2 and ELANE are highly expressed in sepsis and may serve as molecular targets.


Assuntos
Mapas de Interação de Proteínas , Sepse , Humanos , Lipocalina-2/genética , Mapas de Interação de Proteínas/genética , Perfilação da Expressão Gênica , Sepse/genética , Receptores Toll-Like , Biologia Computacional , Redes Reguladoras de Genes
15.
BMC Bioinformatics ; 25(1): 74, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38365632

RESUMO

PURPOSE: Graph coloring approach has emerged as a valuable problem-solving tool for both theoretical and practical aspects across various scientific disciplines, including biology. In this study, we demonstrate the graph coloring's effectiveness in computational network biology, more precisely in analyzing protein-protein interaction (PPI) networks to gain insights about the viral infections and its consequences on human health. Accordingly, we propose a generic model that can highlight important hub proteins of virus-associated disease manifestations, changes in disease-associated biological pathways, potential drug targets and respective drugs. We test our model on SARS-CoV-2 infection, a highly transmissible virus responsible for the COVID-19 pandemic. The pandemic took significant human lives, causing severe respiratory illnesses and exhibiting various symptoms ranging from fever and cough to gastrointestinal, cardiac, renal, neurological, and other manifestations. METHODS: To investigate the underlying mechanisms of SARS-CoV-2 infection-induced dysregulation of human pathobiology, we construct a two-level PPI network and employed a differential evolution-based graph coloring (DEGCP) algorithm to identify critical hub proteins that might serve as potential targets for resolving the associated issues. Initially, we concentrate on the direct human interactors of SARS-CoV-2 proteins to construct the first-level PPI network and subsequently applied the DEGCP algorithm to identify essential hub proteins within this network. We then build a second-level PPI network by incorporating the next-level human interactors of the first-level hub proteins and use the DEGCP algorithm to predict the second level of hub proteins. RESULTS: We first identify the potential crucial hub proteins associated with SARS-CoV-2 infection at different levels. Through comprehensive analysis, we then investigate the cellular localization, interactions with other viral families, involvement in biological pathways and processes, functional attributes, gene regulation capabilities as transcription factors, and their associations with disease-associated symptoms of these identified hub proteins. Our findings highlight the significance of these hub proteins and their intricate connections with disease pathophysiology. Furthermore, we predict potential drug targets among the hub proteins and identify specific drugs that hold promise in preventing or treating SARS-CoV-2 infection and its consequences. CONCLUSION: Our generic model demonstrates the effectiveness of DEGCP algorithm in analyzing biological PPI networks, provides valuable insights into disease biology, and offers a basis for developing novel therapeutic strategies for other viral infections that may cause future pandemic.


Assuntos
COVID-19 , Pandemias , Humanos , SARS-CoV-2 , Mapas de Interação de Proteínas/genética , Biologia , Biologia Computacional
16.
Int J Mol Sci ; 25(4)2024 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-38397053

RESUMO

Odontogenic keratocyst (OK) is a benign intraosseous cystic lesion characterized by a parakeratinized stratified squamous epithelial lining with palisade basal cells. It represents 10-12% of odontogenic cysts. The changes in its classification as a tumor or cyst have increased interest in its pathogenesis. OBJECTIVE: Identify key genes in the pathogenesis of sporadic OK through in silico analysis. MATERIALS AND METHODS: The GSE38494 technical sheet on OK was analyzed using GEOR2. Their functional and canonical signaling pathways were enriched in the NIH-DAVID bioinformatic platform. The protein-protein interaction network was constructed by STRING and analyzed with Cytoscape-MCODE software v 3.8.2 (score > 4). Post-enrichment analysis was performed by Cytoscape-ClueGO. RESULTS: A total of 768 differentially expressed genes (DEG) with a fold change (FC) greater than 2 and 469 DEG with an FC less than 2 were identified. In the post-enrichment analysis of upregulated genes, significance was observed in criteria related to the organization of the extracellular matrix, collagen fibers, and endodermal differentiation, while the downregulated genes were related to defensive response mechanisms against viruses and interferon-gamma activation. CONCLUSIONS: Our in silico analysis showed a significant relationship with mechanisms of extracellular matrix organization, interferon-gamma activation, and response to viral infections, which must be validated through molecular assays.


Assuntos
Cistos Odontogênicos , Tumores Odontogênicos , Humanos , Interferon gama , Cistos Odontogênicos/genética , Cistos Odontogênicos/patologia , Tumores Odontogênicos/patologia , Mapas de Interação de Proteínas/genética
17.
BMC Infect Dis ; 24(1): 32, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38166628

RESUMO

BACKGROUND: Sepsis is a life-threatening condition caused by an excessive inflammatory response to an infection, associated with high mortality. However, the regulatory mechanism of sepsis remains unclear. RESULTS: In this study, bioinformatics analysis revealed the novel key biomarkers associated with sepsis and potential regulators. Three public datasets (GSE28750, GSE57065 and GSE95233) were employed to recognize the differentially expressed genes (DEGs). Taking the intersection of DEGs from these three datasets, GO and KEGG pathway enrichment analysis revealed 537 shared DEGs and their biological functions and pathways. These genes were mainly enriched in T cell activation, differentiation, lymphocyte differentiation, mononuclear cell differentiation, and regulation of T cell activation based on GO analysis. Further, pathway enrichment analysis revealed that these DEGs were significantly enriched in Th1, Th2 and Th17 cell differentiation. Additionally, five hub immune-related genes (CD3E, HLA-DRA, IL2RB, ITK and LAT) were identified from the protein-protein interaction network, and sepsis patients with higher expression of hub genes had a better prognosis. Besides, 14 drugs targeting these five hub related genes were revealed on the basis of the DrugBank database, which proved advantageous for treating immune-related diseases. CONCLUSIONS: These results strengthen the new understanding of sepsis development and provide a fresh perspective into discriminating the candidate biomarkers for predicting sepsis as well as identifying new drugs for treating sepsis.


Assuntos
Perfilação da Expressão Gênica , Sepse , Humanos , Perfilação da Expressão Gênica/métodos , Biomarcadores , Mapas de Interação de Proteínas/genética , Sepse/diagnóstico , Sepse/tratamento farmacológico , Sepse/genética , Biologia Computacional/métodos , Redes Reguladoras de Genes
18.
Bioinformatics ; 40(2)2024 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-38200587

RESUMO

MOTIVATION: Protein-protein interactions (PPIs) are essential to understanding biological pathways as well as their roles in development and disease. Computational tools, based on classic machine learning, have been successful at predicting PPIs in silico, but the lack of consistent and reliable frameworks for this task has led to network models that are difficult to compare and discrepancies between algorithms that remain unexplained. RESULTS: To better understand the underlying inference mechanisms that underpin these models, we designed an open-source framework for benchmarking that accounts for a range of biological and statistical pitfalls while facilitating reproducibility. We use it to shed light on the impact of network topology and how different algorithms deal with highly connected proteins. By studying functional genomics-based and sequence-based models on human PPIs, we show their complementarity as the former performs best on lone proteins while the latter specializes in interactions involving hubs. We also show that algorithm design has little impact on performance with functional genomic data. We replicate our results between both human and S. cerevisiae data and demonstrate that models using functional genomics are better suited to PPI prediction across species. With rapidly increasing amounts of sequence and functional genomics data, our study provides a principled foundation for future construction, comparison, and application of PPI networks. AVAILABILITY AND IMPLEMENTATION: The code and data are available on GitHub: https://github.com/Llannelongue/B4PPI.


Assuntos
Mapas de Interação de Proteínas , Saccharomyces cerevisiae , Humanos , Mapas de Interação de Proteínas/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Reprodutibilidade dos Testes , Proteínas/metabolismo , Algoritmos , Aprendizado de Máquina , Mapeamento de Interação de Proteínas/métodos
19.
Chin J Traumatol ; 27(2): 97-106, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38296680

RESUMO

PURPOSE: Acute kidney injury (AKI) is one of the most common functional injuries observed in trauma patients. However, certain trauma medications may exacerbate renal injury. Therefore, the early detection of trauma-related AKI holds paramount importance in improving trauma prognosis. METHODS: Qualified datasets were selected from public databases, and common differentially expressed genes related to trauma-induced AKI and hub genes were identified through enrichment analysis and the establishment of protein-protein interaction (PPI) networks. Additionally, the specificity of these hub genes was investigated using the sepsis dataset and conducted a comprehensive literature review to assess their plausibility. The raw data from both datasets were downloaded using R software (version 4.2.1) and processed with the "affy" package19 for correction and normalization. RESULTS: Our analysis revealed 585 upregulated and 629 downregulated differentially expressed genes in the AKI dataset, along with 586 upregulated and 948 downregulated differentially expressed genes in the trauma dataset. Concurrently, the establishment of the PPI network and subsequent topological analysis highlighted key hub genes, including CD44, CD163, TIMP metallopeptidase inhibitor 1, cytochrome b-245 beta chain, versican, membrane spanning 4-domains A4A, mitogen-activated protein kinase 14, and early growth response 1. Notably, their receiver operating characteristic curves displayed areas exceeding 75%, indicating good diagnostic performance. Moreover, our findings postulated a unique molecular mechanism underlying trauma-related AKI. CONCLUSION: This study presents an alternative strategy for the early diagnosis and treatment of trauma-related AKI, based on the identification of potential biomarkers and therapeutic targets. Additionally, this study provides theoretical references for elucidating the mechanisms of trauma-related AKI.


Assuntos
Injúria Renal Aguda , Mapas de Interação de Proteínas , Humanos , Biomarcadores , Mapas de Interação de Proteínas/genética , Prognóstico , Perfilação da Expressão Gênica , Injúria Renal Aguda/genética , Injúria Renal Aguda/terapia , Biologia Computacional
20.
BMC Med Genomics ; 17(1): 6, 2024 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-38167011

RESUMO

BACKGROUND: Alzheimer's disease (AD) is a progressive neurodegenerative disease that can cause dementia. We aim to screen out the hub genes involved in AD based on microarray datasets. METHODS: Gene expression profiles GSE5281 and GSE28146 were retrieved from Gene Expression Omnibus database to acquire differentially expressed genes (DEGs). Gene Ontology and pathway enrichment were conducted using DAVID online tool. The STRING database and Cytoscape tools were employed to analyze protein-protein interactions and identify hub genes. The predictive value of hub genes was assessed by principal component analysis and receiver operating characteristic curves. AD mice model was constructed, and histology was then observed by hematoxylin-eosin staining. Gene expression levels were finally determined by real-time quantitative PCR. RESULTS: We obtained 197 overlapping DEGs from GSE5281 and GSE28146 datasets. After constructing protein-protein interaction network, three highly interconnected clusters were identified and 6 hub genes (RBL1, BUB1, HDAC7, KAT5, SIRT2, and ITGB1) were selected. The hub genes could be used as basis to predict AD. Histological abnormalities of brain were observed, suggesting successful AD model was constructed. Compared with the control group, the mRNA expression levels of RBL1, BUB1, HDAC7, KAT5 and SIRT2 were significantly increased, while the mRNA expression level of ITGB1 was significantly decreased in AD groups. CONCLUSION: RBL1, BUB1, HDAC7, KAT5, SIRT2 and ITGB1 are promising gene signatures for diagnosis and therapy of AD.


Assuntos
Doença de Alzheimer , Doenças Neurodegenerativas , Animais , Camundongos , Sirtuína 2/genética , Perfilação da Expressão Gênica , Doença de Alzheimer/diagnóstico , Doença de Alzheimer/genética , Mapas de Interação de Proteínas/genética , Biologia Computacional , RNA Mensageiro , Redes Reguladoras de Genes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...